Sunday, November 4, 2012

Sample General Mathematics Question 5 for Class-X





              Class : X
Time : 2.5 hrs.                                                                                                Full marks: 75

1.      If P , Q & R are be the subsets of the universal set U , Then prove that ,
                                                               or
Prove that ,     A ×  = ( A × B)  ( A×C) .
2. Answer any two .                                                                                           3×2 = 6
  a) Factorise , (x + y + z) (xy + yz + zx) – xyz
  b) If  a-3 + b-3 + c-3 = 3(abc)-1 , then prove that ,
      a-1 + b-1 + c-1 =0 or a-1 = b-1 = c-1 
  c) Simplify , …… 
3. If S  then prove that , S = N ,                            4
                                                               or
  Prove by Mathematical Induction Formula , 
a + ar + ar2 + ar3 +………+ arn-1 =
4.         If a2 + 2 = ; then prove that   3a3 + 9a – 8 = 0              5
                                                  or
If a(3-x).b5x = a(5+x).b3x  ; then prove that , xlogk = logka     
5.         Findout the domain & range of F(x) = (1 – x)2  & prove that F(x) is one -one or not ?                                                                                 4                                                or
If S = ; then find out from the graph that S is a function or not ?
6.         Solve & verify : 6                                         4
                                                  or
Solve & show the solution set on the number line ; < 0
7.         Solve:  ; .
                                                  or
Sketch the graph of  > 0 & 2x – y – 6  0 ;
8.         Impose a condition on x so that
will have a sum & also find its sum .                                                   4
9.         State & prove that Apolloneous theorem .                              6
                                                   or
State & prove that the Ptolemy’s  theorem .
     10.                  If AD, BE & CF are three medians of the ∆ABC intersects at O then,           prove that  .                               4                                                          or
           In the ∆ABC , AB = AC , AD BC & R be the circum radius of the
          ∆ABC ; then peove that ,  .
P.T.O

::  2  ::

 11.    Draw a triangle where the base , vertical angle & difference of two sides are given . (Sign of construction & description are essential)                             4
Or,    Draw a circle which passes through the two fixed point & whose centre lies on the given st. line .  (Sign of construction & description are essential)
12.     If a , b & c are the position vectors of the point A ,B & C & the point C divides the line AB into m : n then prove that the position vector of C is
c =                                                                                                  4
                                                              or
If AD , BE & CF are the three medians of the ∆ABC then prove that by vector method AD + BE + CF = O ;
13. The volume of a rt. circular cone is V , area of a curved circle S ,radius of a base is r & the semi – vertical angle is Ф ; then prove that , S =     4                                                         or
If the curved surface & the volume of a cylinder are 100 m2 & 150 m3      ; then  find its height & radius .
14. Answer any three .                                                                 3 × 4 = 12               a) Define radian angle . Prove that radian is a constant angle .
b) Prove that ,  
c) Prove that cosA - sinA = sinA ; when cosA + sinA = cosA .
d) If tan =   & sin is negative then find the value of
e) Solve : ;              

15.     Find the mean deviation or sketch an curve from the given data :    5

Class Interval
10 - 14
15 - 19
20 - 24
25 – 29
30 - 30
35 - 39
Frequency
8
12
15
11
9
5

* * *


 

No comments:

Post a Comment